Speech-based emotion detection in a resource-scarce environment
نویسندگان
چکیده
We explore the construction of a system to classify the dominant emotion in spoken utterances, in a environment where resources such as labelled utterances are scarce. The research addresses two issues relevant to detecting emotion in speech: (a) compensating for the lack of resources and (b) finding features of speech which best characterise emotional expression in the cultural environment being studied (South African telephone speech). Emotional speech was divided into three classes: active, neutral and passive emotion. An emotional speech corpus was created by naive annotators using recordings of telephone speech from a customer service call centre. Features were extracted from the emotional speech samples and the most suitable features selected by sequential forward selection (SFS). A consistency check was performed to compensate for the lack of experienced annotators and emotional speech samples. The classification accuracy achieved is 76.9%, with a 95% classification accuracy for active emotion.
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملThe Scarce Drugs Allocation Indicators in Iran: A Fuzzy Delphi Method Based Consensus
Objective: Almost all countries are affected by a variety of drug-supply problems and spend a considerable amount of time and resources to address shortages. The current study aims to reach a consensus on the scarce drug allocation measures to improve the allocation process of scarce drugs in Iran by a population needs-based approach. Methods: To achieve the objective, two phases were co...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملThe Scarce Drugs Allocation Indicators in Iran: A Fuzzy Delphi Method Based Consensus
Objective: Almost all countries are affected by a variety of drug-supply problems and spend a considerable amount of time and resources to address shortages. The current study aims to reach a consensus on the scarce drug allocation measures to improve the allocation process of scarce drugs in Iran by a population needs-based approach. Methods: To achieve the objective, two phases were co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- South African Computer Journal
دوره 40 شماره
صفحات -
تاریخ انتشار 2008